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Abstract. We provide a package of strategies for automation of non-linear arithmetic in PVS. In

particular, we describe a simplification procedure for the field of real numbers and a strategy for cancellation

of common terms.
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1. Introduction. While conducting research on the formal safety analysis of Air Traffic Management

(ATM) systems at the NASA Langley Research Center [2, 3, 6], we have found the verification system PVS

[7] very well suited for specifying avionics systems. Avionics systems are hybrid systems, that is, they are

digital systems that interact with the continuous physical environment where they are deployed. These two

levels of dynamics, discrete and continuous, can be easily modeled using PVS higher-order logic. Despite

that, deductive methods, such as theorem proving, are not usually the first approach for modeling and

verification of hybrid systems. Most of the literature on verification of hybrid systems concerns variations

of algorithmic methods, such as model checking, on restricted sub-classes of the general problem. This can

be explained by the fact that although theorem provers based on higher-order logic, e.g., PVS [7], Coq [1],

Isabelle-HOL [8], integrate expressive specification languages with powerful theorem provers, they lack of

adequate support for continuous mathematics.

The PVS system, for instance, incorporates a rich type system supporting predicate sub-typing and

dependent types. It also comes with a set of decision procedures that solve problems in a broad range of

decidable fields. Moreover, it includes in the prelude library a large collection of properties for real numbers

(for example, real props and real axioms) that are applied automatically by the decision procedures.

This is true except for non-linear ones, i.e., those involving multiplication or division of non-numeric terms.

Indeed, the PVS command (GRIND :theories "real props"), although useful in several cases, fails to

discharge a simple non-linear formula such as

a+ 1
a+1
b+1

− b = 1(1.1)

where a, b are positive real numbers. In [9], Rushby and Shankar show how a small augmentation of the

PVS prelude library and a deep knowledge of the PVS rewriting mechanism can provide effective automatic
arithmetic simplification. However, a lack of good documentation of PVS rewriting features, forbid the

access of all these capabilities to a normal user.

Manual proofs of formulas involving non-linear arithmetic can be tedious. It usually requires the ability

to recognize by heart the names of the lemmas in the prelude library. It may help that some names in this
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library are mnemonics. For example, to check Formula 1.1 we could use Lemma div div1, which states

x
n0y
n0z

=
x× n0z
n0y

where n0y and n0z denote real numbers different from zero. After applying this lemma on Formula 1.1, via

(REWRITE "div div1"), we get the formula

1 + b+ (a× b+ a)
1 + a

− b = 1(1.2)

At this point, we may want to rearrange Formula 1.2. In general, this is done with the proof command CASE.

However, in this simple example, we add b to both sides of the equality using the command BOTH-SIDES,

and finish the proof with (ASSERT).
The complete proof of Formula 1.1 is a couple of lines long and none of the steps is really difficult.

However, the steps become the more a more involved when checking large formulas. Consider for example
Formula 1.3, taken from the verification of a conflict detection and resolution algorithm developed at ICASE

- NASA Langley [6]. The first naive attempt to verify this formula, under the assumption that it is well-

defined, was over a hundred of lines.

viy ×
√
s2 −D2 − vix ×D

voy ×
√
s2 −D2 − vox ×D

=
D2 − s2

(s2−D2)×voy−D×vox×
√
s2−D2

s×(vix×voy−vox×viy) × s× vox
+ vix/vox(1.3)

In [11], Di Vito presents a package of strategies and functions for manipulating arithmetic expressions

in PVS. Using this package, we have developed a simplification procedure for the field of real numbers.

The strategy, called FIELD, helped us to reduce the proofs of formulas 1.1, 1.2, and 1.3 to just one line. In

Section 2, we describe the strategy and give some examples of usage. In addition to FIELD, we have developed

strategies for cancellation of common terms, and some support strategies for arithmetic manipulation. These

strategies are described in Section 3 and Section 4. Finally, in Section 5, we discuss some issues related to

real automation in PVS and we summarize our work. The package is available at:

http://www.icase.edu./~munoz/Field/field.html.

Most of the strategies developed in our package act on relational formulas, that is, arithmetic formulas

having the form e=≤≥ f , where =≤≥ ∈ {=, <,≤, >,≥}. Through this paper, for the sake of readability, we have
used a LATEX-style for writing PVS code.

2. Reals in the Field. FIELD is a simplification procedure for relational formulas on the field of real

numbers. It was originally based on the tactic Field of Coq V7 [5], but it has been extensively adapted

to cope with PVS idiosyncrasies. The tactic Field of Coq is reffiexive, i.e., it uses Coq’s own reduction
mechanism to avoid rewriting steps, which yield large proof terms in the system. The tactic Field first

translates the formula to an intermediate representation (the reflexive step), then removes all the inverses

appearing in the original formula, and finally applies Ring, another reflexive tactic that implements a decision

procedure for the ring of real numbers. In contrast, the strategy FIELD of PVS largely depends on decision

procedures, which implement Ring capabilities but are not reflexive. It also has been extended to handle

inequalities.

2.1. Algorithm. FIELD, applied to the relational formula e=≤≥ f , is described by the algorithm:

1. Collect all the inverses x1, . . . , xn appearing as denominators of sub-terms of e, f . If n = 0, apply

ASSERT.

2. Assume p 6= 0, where p = x1 × . . .× xn.
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3. Let e′ = p× e and f ′ = p× f .

4. If =≤≥ is the equality operator, replace the equality e = f with the equality e′ = f ′.

5. If =≤≥ is in {<,≤, >,≥}, replace the inequality e=≤≥ f with the two inequalities (1) e′=≤≥ f ′, assuming

p > 0, and (2) f ′=≤≥ e′, assuming p < 0.

6. For each one of the new formulas:

(a) Cancel inverses in e′, f ′, and simplify with decision procedures, i.e., ASSERT and GRIND.

(b) Call FIELD with the resulting formula.

As explained in [5], the recursive call is needed to handle the case of nested divisions. In order to remove

inverses, an explicit control on the application of distributive laws is required. Unfortunately, PVS applies
simplification rules, including distributive laws, after performing any rewriting step. Note, for example,

that the rewrite command on Formula 1.1 yields a rearranged Formula 1.2 where multiplications have been

completely distributed. In particular, the common term (a+1) is no longer available for cancellation. Below,

we describe a strategy that blocks the automatic application of distribute laws by introducing new variable

names.

2.2. Use and Examples. Following is the description of the strategy and some examples of usage.

The examples refer to the PVS code in Figure 2.1.

syntax: (FIELD &OPTIONAL fnum[1] grind?[T])

effect: Applies a simplification procedure for the field of real numbers on the formula fnum.

requirements: If fnum is a formula in the consequent, it should have the form ∀(x1, . . . , xn) : e=≤≥ f .

Otherwise, it should have the form ∃(x1, . . . , xn) : e=≤≥ f . In both cases n ≥ 0. FIELD uses GRIND to

prove that denominators are different from zero. That strategy sometimes falls in an infinite loop.

Using the key grind? = NIL is safer, but less effective.

The command (FIELD) takes care of lemmas ex1 and ex2, which correspond to formulas 1.1 and 1.2,

respectively. FIELD also works on inequalities, e.g., the sequence of proof commands (SKOSIMP)(FIELD)

discharges Lemma ex3.

Validation of Formula 1.3 requires a little bit more work. First, we import the theory reals@sqrt, which

makes part of the NASA Langley PVS library reals. This library is available at

http://shemesh.larc.nasa.gov/ftp/larc/PVS-library/pvslib.html.

Finally, we write Formula 1.3 as Lemma kb3d in PVS and prove it with the sequence of commands

(SKOSIMP)(FIELD 4). Only one TCC of kb3d has to be proved by hand; it can be easily discharged using

the properties in the theory sqrt.

Finally, FIELD can also be used to remove inverses. For example, the sequence of proof commands

(SKOLEM 1 ("nx" "ny" "x" "y"))(FLATTEN)(FIELD -1) on Lemma ex4 yields

{-1} x × nx - y × nx = 0

|-------

[1] x = y

To finish this proof, we multiply formula 1 with nx, for example using Di Vito’s strategy [11] MULT-BY, and

then apply the proof command (ASSERT). We may also recognize that the term nx in formula {-1} can be

cancelled. We show a strategy for cancellation of common terms in the next section.

3. Cancellation of Common Terms. FIELD is very effective removing inverses, however, by doing

that, it tends to introduce common terms as in the case of Lemma ex4 above. CANCEL-BY is a simplification

strategy for cancellation of a common term appearing in a relational formula. First, it divides both sides by
the common term, then it distributes, and finally, it simplifies the expressions using PVS decision procedures.
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a,b : VAR posreal

x,y : VAR real

nx,ny : VAR nzreal

ex1 : LEMMA (a+1)/((a+1)/(b+1)) - b = 1

ex2 : LEMMA (1+b+(a×b+a))/(1+a) - b = 1

ex3 : LEMMA x > 1 ⇒
x/((x-1)×(x+1)) - 1 /((x-1)×(x+1)) ≥ 1 /(x+1) - 1

ex4 : LEMMA x × nx/ny - y × nx/ny = 0 ⇒
x = y

ex5 : LEMMA 4×((a+1)×b) + ((a+1)×6)×(a+1) = -(a+1)×((x+1)×2) ⇒
2×b + 3×(a+1) + x + 1 = 0

IMPORTING reals@sqrt

t,vix,viy,vox,voy,s : VAR real

D : VAR posreal

kb3d : LEMMA

vox > 0 ∧ s > D ∧ s × vix × voy - s × viy × vox 6= 0 ∧
((s × s - D × D) × voy - D × vox × sqrt(s × s - D × D)) /

(s × (vix × voy - vox × viy)) × s × vox 6= 0 ∧
voy × sqrt(s × s - D × D) - D × vox 6= 0

⇒
(viy × sqrt(s × s - D × D) - vix × D) /

(voy × sqrt(s × s - D × D) - vox × D)

=

(D × D - s × s) /

(((s × s - D × D) × voy - D × vox × sqrt(s × s - D × D)) /

(s × (vix × voy - vox × viy)) × s × vox) +

vix / vox

Fig. 2.1. PVS code for examples of FIELD

3.1. Algorithm. CANCEL-BY, applied to a term t in a relational formula e=≤≥ f , is described by the

algorithm:

1. Assume t 6= 0.

2. If =≤≥ is the equality operator, replace the equality e = f with the equality e/t = f/t.

3. If =≤≥ is in {<,≤, >,≥}, replace the inequality e=≤≥ f with the two inequalities (1) e/t=≤≥ f/t, assuming

t > 0, and (2) f/t=≤≥ e/t, assuming t < 0.

4. For each one of the new formulas:
(a) Distribute t on expressions e and f . Let e′ and f ′ be the new formulas.
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(b) Remove inverses in e′, f ′, and simplify with decision procedures.

3.2. Use and Examples. Following is the description of the strategy and some examples of usage.

syntax: (CANCEL-BY fnum expr)

effect: Cancels the expression expr in the formula fnum.

The sequent

{-1} x × nx - y × nx = 0

|-------

[1] x = y

coming from Lemma ex4, Figure 2.1, can be discharged with the command (CANCEL-BY -1 "nx").

The commands (SKOLEM 1 ("a" "b" "x")) (FLATTEN) on Lemma ex5, Figure 2.1, yield the sequent

{-1} 4 × ((a + 1) × b) + ((a + 1) × 6) × (a + 1) = -(a + 1) × ((x + 1) × 2)

|-------

{1} 2 × b + 3 × (a + 1) + x + 1 = 0

It can be discharge with the command (CANCEL-BY -1 "(a+1)×2").

4. “Extra-tegies”. In addition to FIELD and CANCEL-BY, we have implemented some general strategies,
in a package called extra-tegies, to support automation on real numbers and arithmetic manipulations.
This package is complementary to the one developed by Di Vito [11].

4.1. Automation support.

syntax: (GRIND-REALS)

effect: Applies PVS command GRIND with the theories real props and extra real props. The latter one

makes part of the package in [11]. GRIND-REALS does no expand definitions.

caveat: Just as GRIND, GRIND-REALS may not terminate.

syntax: (REALS-PROPS &OPTIONAL fnums[*])

effect: Applies PVS command AUTO-REWRITE, with the theories real props and extra real props, on the

formulas fnums.

tip: If GRIND-REALS does too much, try REAL-PROPS.

syntax: (NAME-DISTRIBS &OPTIONAL name fnums[*])

effect: Introduces new names, based on name, to block the automatic application of distribute laws in

formulas fnums. If no name is given, new names are automatically generated.

usage: For illustration purposes, consider the sequent

{-1} x×(x + 1) = y

{-2} y×(y + 1) = x

|-------

{1} x×(x + 2) = y×(y + 2)

the command (NAME-DISTRIBS "A" 1) uses ”A” to create new names:

{-1,(A1:)}
(y + 2) = A12__

{-2,(A1:)}
(x + 2) = A11__

[-3] x × (x + 1) = y

[-4] y × (y + 1) = x
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|-------

{1} x × A11__ = y × A12__

In contrast, (NAME-DISTRIBS :name NIL :fnums 1) generates new names each time the command

is invoked.

caveat: If name is null, there is no guarantee that the same names are used when re-running the proof.

In that case, explicit reference to expressions containing new names should be avoided. If name is

supplied, the new names are guaranteed to be the same each time the proof is executed.

syntax: (REPLACES &OPTIONAL fnums [*] in[*] from to hide?[T] dir[LR] step[(SKIP)])

effect: Iterates the PVS command REPLACE in the formulas in, rewriting with the formulas in fnums,

respecting the order. The keys dir and hide? are like in REPLACE. Notice that in contrast to

REPLACE, true is the default value of hide?. Instead of using fnums, rewriting formulas can be

addressed via from and to. The key step specifies the command to be executed after all the

replaces have taken place.

usage: Given the sequent

{-1} Delta = sq(B) - 4×A×C
{-2} Delta ≥ 0

{-3} x = (sqrt(Delta) - B) / (2×A)
|-------

{1} A×sq(x) + B×x + C = 0

the command (REPLACES :from -1 :to -3 :in 1) yields the sequent

{-1} Delta = sq(B) - 4×A×C
{-2} Delta ≥ 0

|-------

{1} A×sq((sqrt(Delta) - B) / (2×A)) +

B×((sqrt(Delta) - B) / (2×A))
+ C

= 0

Note that since Delta does not appear in the original formula {1}, it does not get replaced in the

final sequent when the replacements are applied in the order −1,−2,−3. In contrast, the command

(REPLACES :from -3 :to -1 :in 1) yields the sequent

{-1} Delta ≥ 0

|-------

{1} A×sq((sqrt(sq(B) - 4×A×C) - B) / (2×A)) +

B×((sqrt(sq(B) - 4×A×C) - B) / (2×A))
+ C

= 0

The latter sequent is also produced with the command (REPLACES).

4.2. Arithmetic and logic manipulations.

syntax: (NEG-FORMULA fnum)

effect: Negates both sides of the relational formula fnum.

usage: (NEG-FOMULA -1) on sequent

{-1} x < y
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{-2} a = b

|-------

{1} x 6= a + b ∧ y > a - b

produces

{-1} -x > -y

[-2] a = b

|-------

[1] x 6= a + b ∧ y > a - b

syntax: (ADD-FORMULAS fnum1 fnum2 &OPTIONAL :hide?[T])

effect: Adds relational formulas fnum1 and fnum2. Hides them when key hide? is true.

usage: (ADD-FOMULAS -1 -2 :hide? NIL) on the last sequent yields

{-1} -x + a > -y + b

[-2] -x > -y

[-3] a = b

|-------

[1] x 6= a + b ∧ y > a - b

syntax: (WRAP-FORMULA fnum str)

effect: Wraps both sides of the relational formula fnum with the string str.

usage: (WRAP-FORMULA -3 "sq") on the last sequent yields

{-1} sq(a) = sq(b)

[-2] -x + a > -y + b

[-3] -x > -y

[-4] a = b

|-------

[1] x 6= a + b ∧ y > a - b

When proving properties on large arithmetic propositions, involving logical operators, it happens that
side conditions have to be proven and then kept as hypothesis. The PVS command SPLIT is not very effective

decomposing this kind of formulas, since it symmetrically splits the propositions. We have implemented an
asymmetric split strategy called SPLASH.

syntax: (SPLASH fnum)

effect: Asymmetrically splits a conjunction fnum in the consequent (or a disjunction in the antecedent).

usage: (SPLASH 1) on the last sequent yields the two sequents

{-1} x 6= a + b

[-2] sq(a) = sq(b)

[-3] -x + a > -y + b

[-4] -x > -y

[-5] a = b

|-------

{1} y > a - b
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[-1] sq(a) = sq(b)

[-2] -x + a > -y + b

[-3] -x > -y

[-4] a = b

|-------

{1} x 6= a + b

Note the hypothesis {-1} in the first sequent. Now try (UNDO), and compare with (SPLIT 1), where

this hypothesis is missing.

5. Conclusion. Hopefully, a decision procedure for the closed field of real number, such as Quantifier

Elimination by Cylindrical Algebraic Decomposition [4], will soon be available in PVS [10]. In the mean

time, we may have to deal with PVS limitations to handle non-linear arithmetic. Full automation has also

its limitations: complex expressions may explode the computational capabilities of the machine. In the other

side, proofs by hand are often tedious due to the PVS spartan support of algebraic manipulations.

Based on our experience on verification of avionics systems, we have implemented a package of strategies
that combines simple arithmetic manipulation with PVS arithmetic decision procedures. For example, the

strategy FIELD is a simplification procedure for the field of real numbers that works by removing inverses.

The package also provides strategies for cancellation of common terms, negation and addition of formulas,

and other common logic and arithmetic manipulation strategies.

The complete package was tuned and tested on several real examples. It has been shown effective in

alleviating the proof effort of large and complex formulas. Last, but not least, the set of strategies contained
in the package increases the automation power of the theorem prover, without compromising the soundness

of the system. Indeed, since the strategies do not make external calls from the system, they are as sound as

the original PVS theorem prover.
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